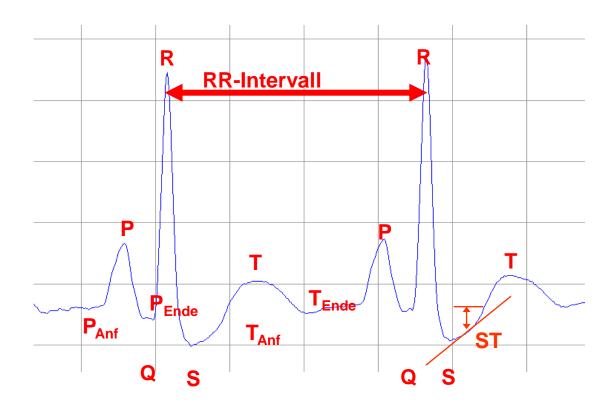
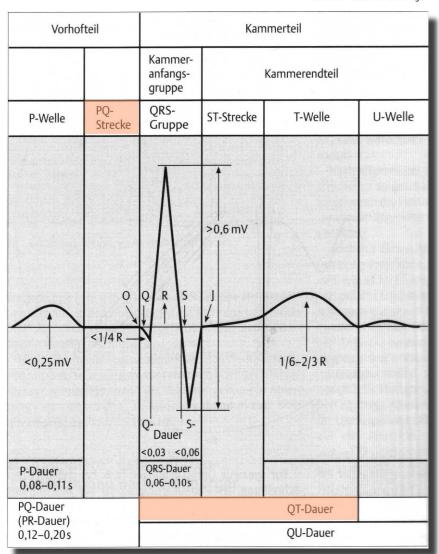


Biomedizinische Messtechnik I

Prof. Wilhelm Stork


Institut für Technik der Informationsverarbeitung (ITIV)


Parametervektor eines QRS-Komplexes

$$\vec{m}_{QRS} = \left(t_{P-Anfang}, t_{P-Ende}, t_{Q}, t_{R}, t_{S}, t_{T-Anfang}, t_{T-Ende}, t_{RR}, t_{PQ}, t_{QT}, Slope_{ST}, U_{J-Point}, U_{P}, U_{R}, U_{T}\right)$$

- PQ-Strecke
 - Hinweis auf Überleitungsstörungen im Bereich des AV-Knotens
- QT-Dauer
 - Hinweis auf
 Repolarisationsstörungen
 → Gefahr der Ausbildung
 kreisender Erregungen
 - Herzfrequenzabhängige Korrektur nach der Formel von Bazett

Quelle: B.-D. Gonska, R.Heinecker: EKG in Klinik und Praxis, Stuttgart, New York, Thieme, 1999

- Für Schlagklassifikation
 - Differenzierung zwischen supraventrikulären und ventrikulären Schlägen
 - Erregungsleitungsstörungen im Ventrikel (Schenkelblöcke)
 - (Supra-)Ventrikuläre Extraschläge (Extrasystolen, Ectopic Beats)
 - (Supra-)Ventrikuläre Ersatzschläge (Escape Beats)
 - Schrittmacherinduzierte Schläge (SM-Spike-Erkennung meist per Hardware gelöst)

- Für RR-Zeitreihe
 - Histogramm der RR-Intervalle
 - Erkennen von Pausen
 - Erkennen von tachykarden/bradykarden Phasen

Medizinische Statistik: Kenngrößen bei Klassifikationen

- Einteilung von Ereignissen in Klassen an Hand verschiedener Parameter
- Beispiel: Drei Klassen X, Y, Z, drei Ereignisse: x aus X, y aus Y, z aus Z
 - Richtige positive Klassifikation: True Positives (TP): x→X; y →Y; z→Z
 - Richtig negative Klassifikation: True Negative (TN): y,z→¬X, x,z→¬Y, x,y→¬Z (¬ = "nicht")
 - Falsche negative Klassifikation: False Negatives (TN): x→Y,Z; y→X,Z; z→X,Y
 - Falsch positive Klassifikation: False Positives (FP): y,z→X; x,z→Y; x,y→Z

Medizinische Statistik: Kenngrößen bei Klassifikationen

Eintragen der Testergebnisse in Ergebnismatrix bei bekannter Referenz

Ref	X	Υ	Z
Test			
X	xX = TP(X)	xY = FP(X) = FN(Y)	xZ = FP(X) = FN(Z)
у	yX = FP(Y) = FN(X)	yY = TP(Y)	yZ = FP(Y) = FN(Z)
Z	zX = FP(Z) = FN(X)	zY = FP(Z) = FN(Y)	zZ = TP(Z)

Medizinische Statistik: Kenngrößen bei Klassifikationen

Sensitivität (Sensitivity): Empfindlichkeit des Verfahrens

$$Se = \frac{TP}{TP + FN}$$

Spezifität (Specifity): Trennungsfähigkeit eines Verfahrens

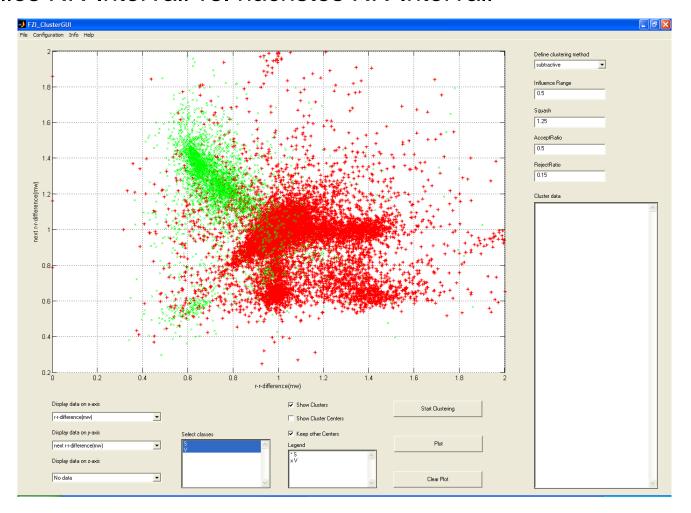
$$Sp = \frac{TN}{TN + FP}$$

Positive Prädiktivität (Pos. Predictivity): Zuverlässigkeit einer Klassifikation

$$+P = \frac{TP}{TP + FP}$$

Negative Prädiktivität (Neg. Predictivity): Zuverlässigkeit einer Nicht-Klassifikation

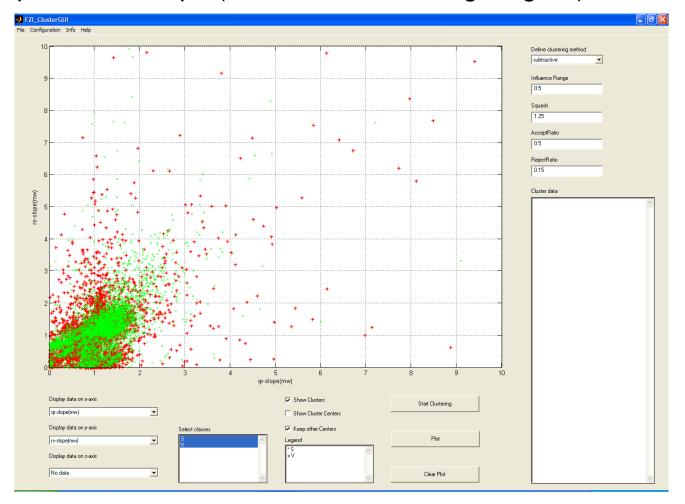
$$-P = \frac{TN}{TN + FN}$$


Akkuratheit (Accuracy): Maß für die Gesamtgüte

$$AC = \frac{\sum TP}{\sum TP + \sum FP} = \frac{\sum TP}{\sum TP + \sum FN}$$

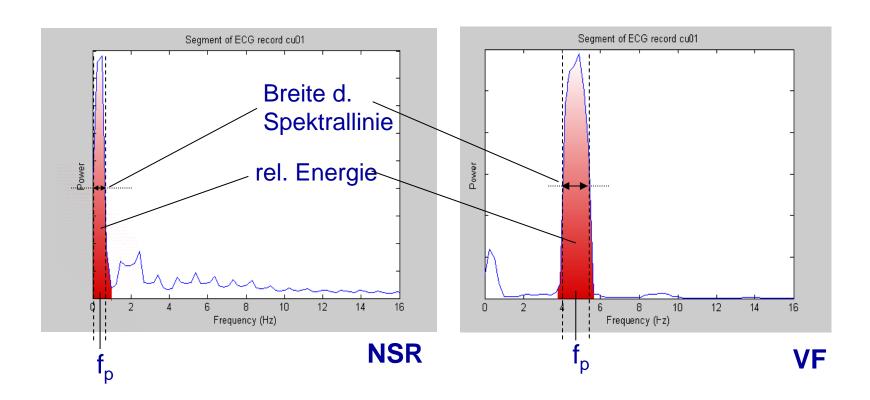
Parameterplots als Grundlage für **Klassifikation**

Aktuelles RR-Intervall vs. nächstes RR-Intervall



11

Parameterplots als Grundlage für **Klassifikation**



QR-Slope vs. RS-Slope (keine Differenzierung möglich)

Für Spektralanalyse

Meta-Informationen des EKG

- Schlagliste
 - Liste der klassifizierten Schläge → Grundlage für Rhythmusanalyse
- Ischämie
 - Vermessungen der ST-Strecke
 - Abweichung von der Nulllinie am J-Punkt
 - Steigung der ST-Strecke
- Repolarisation
 - QT-Dauer
 - Spätpotentialanalyse
- NN-Zeitreihe
 - Ausgangspunkt für HRV oder DC
- VES-Liste
 - Beurteilung der Schwere koronarer Herzkrankheiten (KHK)
 - Einteilung in Lown-Klassen
- Spektrum
 - Parameter für Unterscheidung zwischen defibrillationspflichtigen (VT/VF) und nicht defibrillationspflichtigen Rhythmen

Meta-Informationen des EKG

- Rhythmusanalyse
 - Bezeichnung von EKG-Abschnitten auf Grundlage der detektierten Schlagklassen. Beispiel:
 - Extrasystolen, Coplets, Salven, ventrikuläre Tachykardien
 - Pausen, supraventrikuläre Tachykardien
 - Blockbilder (AV-Block, Schenkelblock)
- HRV
 - Statistische Parameter
 - Geometrische Parameter
 - Spektrale Parameter
- HRT
 - Turbulence Onset
 - Turbulence Slope

Lown-Klassen

 Beurteilung der Schwere einer KHK an Hand der Art des Auftretens von ventrikulären Erregungsbildungsstörungen

Grad	Beschreibung
Grad 0	Keine ventrikulären Extrasystolen (VES)
Grad I	VES < 30/h
Grad II	VES > 30/h
Grad IIIa	Polytope VES
Grad IIIb	Ventrikulärer Bigeminus
Grad IVa	Couplets
Grad IVb	Triplets
Grad V	Früh einfallende VES (R-on-T)

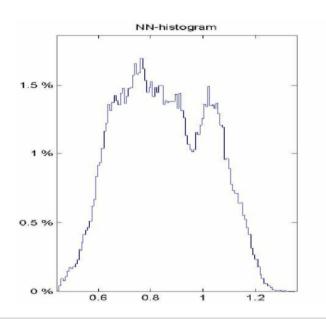
16

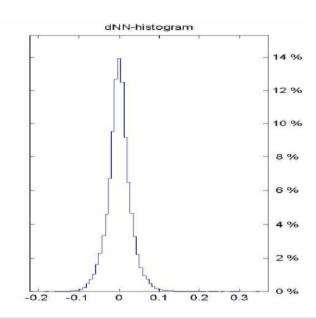
Herzratenvariabilität (HRV)

- Modulation der Herzfrequenz durch das vegetative Nervensystem → Schwankung aufeinander folgender RR-Intervalle
- Modulation greift auf spontane Depolarisation des Sinusknotens zu → nur Betrachtung von NN-Intervallen
- Modulationsfrequenzen sehr niedrig → lange Beobachtungszeiträume notwendig (Langzeit-EKG)
- Eingeschränkte HRV ist zuverlässiger Prädiktor für plötzlichen Herztod (= spontanes Entwickeln einer VT/VF)
- Entwicklung vielfältiger Parameter

17

HRV: Statistische Parameter

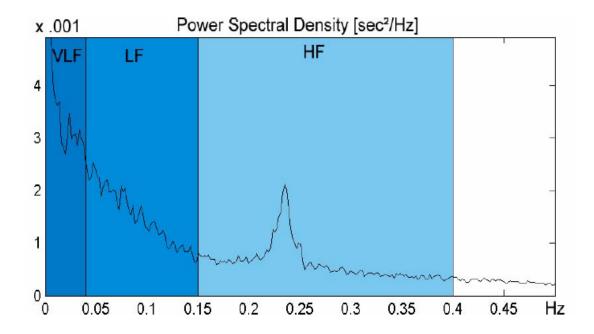



- SDNN Standardabweichung aller NN-Intervalle
 - Spontanvariabilitäten von Schlag zu Schlag und über längere Zeiträume (Tag-Nacht-Zyklus). SDNN steigt mit der Länge des Aufnahmezeitraums.
- **SDNN**index
 - Gemittelte Varianz der einzelnen Fünf-Minuten-Segmente. Kein Einfluss der Variabilitäten bei längerer Beobachtung
- RMSSD
 - Wurzel aus dem Mittelwert der quadrierten Differenzen zweier aufeinanderfolgender NN-Intervalle. Betrachtung von Spontanvariabilitäten.
- NN50
 - Anzahl von aufeinanderfolgenden NN-Intervalle, mit dNN>50ms. Betrachtung von Spontanvariabilitäten.
- pNN50
 - NN50 geteilt durch die Anzahl aller NN-Intervalle
- SDSD
 - Standardabweichung der Differenzen aufeinanderfolgender NN-Intervalle
- SDANN
 - Standardabweichung der über Fünf-Minuten-Segmente gemittelten NNIntervalle

HRV: Geometrische Parameter

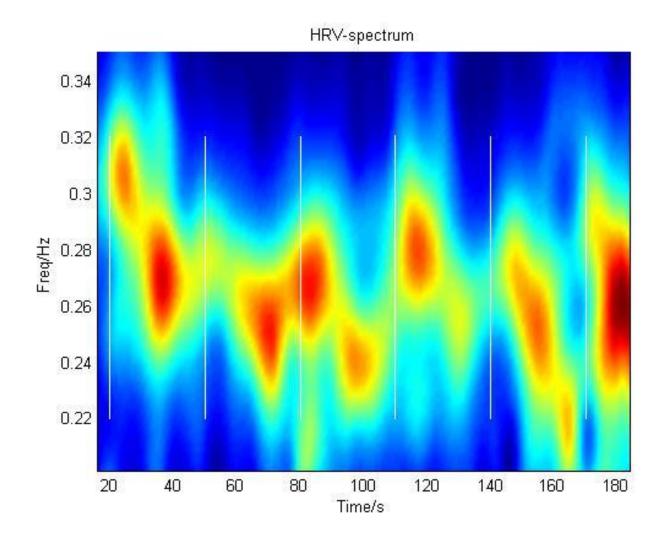
- NN-Histogramm
 - Auftragen der NN-Intervalle, sowie der Differenzen aufeinander folgender NN-Intervalle
 - Gibt Auskünfte über das Auftreten von VES

HRV: Geometrische Parameter



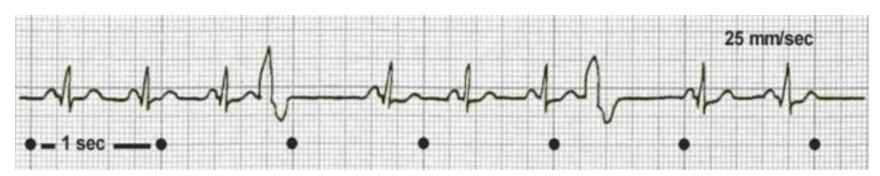
- Verteilungsbreite
 - Bestimmung der Breite, innerhalb derer das Histogramm einen Schwellwert überschreitet
- HRV triangular index
 - Gesamtanzahl der NN-Intervalle geteilt durch das Maximum des NN-Histogramms.
- TINN (Triangular interpolation of NN)
 - Approximation des NN-Histogramm durch ein Dreieck. TINN: Basislänge des Dreiecks an.
- Logarithmic index
 - Approximation des dNN-Histogramm eine e-Funktion. Je kleiner der ermittelte Exponent der e-Funktion, desto breiter die Verteilung.

HRV: Spektrale Parameter


- Einteilung in verschiedene Bänder: (ULF), LF, VLF, LF, HF
- Niedrige Frequenzen brauchen lange Beobachtungszeit → Kurzzeit-HRV: 5-Minuten-Segmente
 - → Verwendung von 24-Stunden-EKG-Aufnahmen

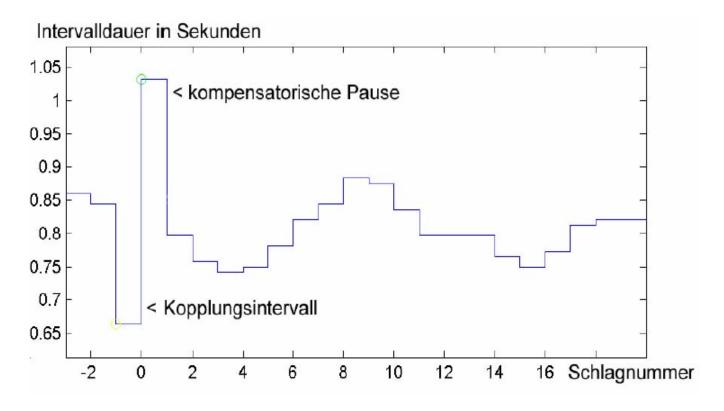
21

HRV: Spektrogramm



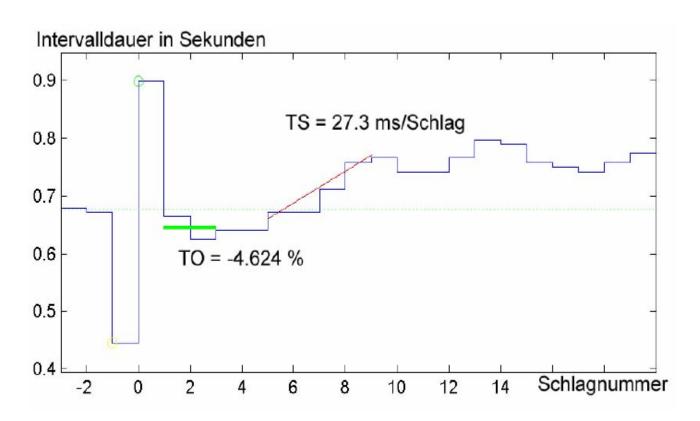
Heart Rate Turbulence (HRT)

- Im Gegensatz zur HRV Untersuchung von singulären, kompensierten, ventrikulären Extrasystolen im EKG und den darauf folgenden Normalschlägen
- Parameter der HRT geben Auskunft darüber, wie gut der kardiale Regelmechanismus funktioniert → Stabilität des Systems
- Nach retrospektiven Studien: HRT ist stabiler multivariater Risikofaktor für plötzlichen Herztod nach Myokardinfarkt

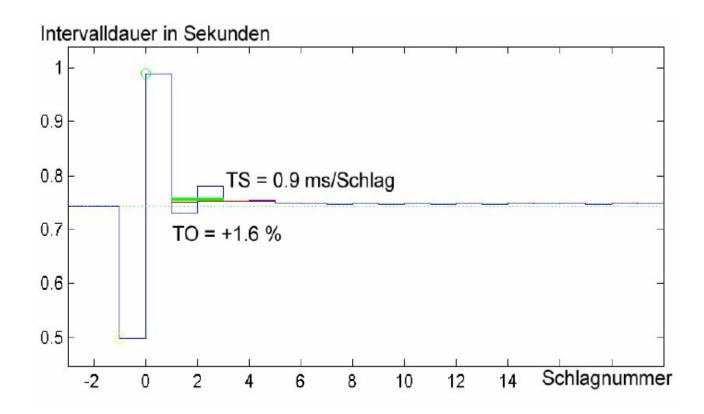


Quelle: grundkurs-ekg.de

EKG-Parameter: HRT


- HRT-Parameter:
 - Turbulence Onset
 - Turbulence Slope

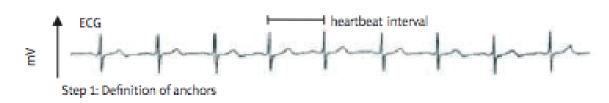
EKG-Parameter: HRT

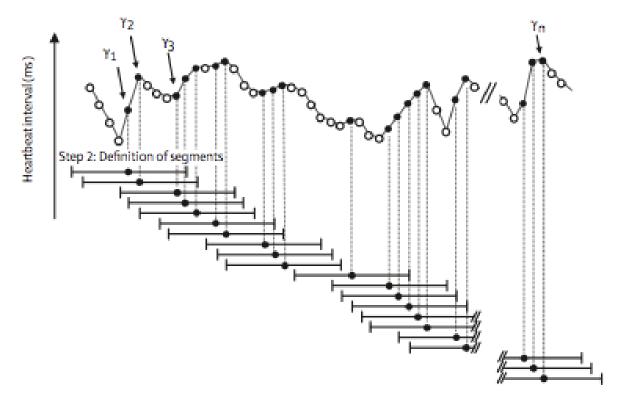

- HRT-Parameter:
 - Turbulence Onset
 - Turbulence Slope

EKG-Parameter: HRT

- HRT-Parameter:
 - Turbulence Onset
 - Turbulence Slope

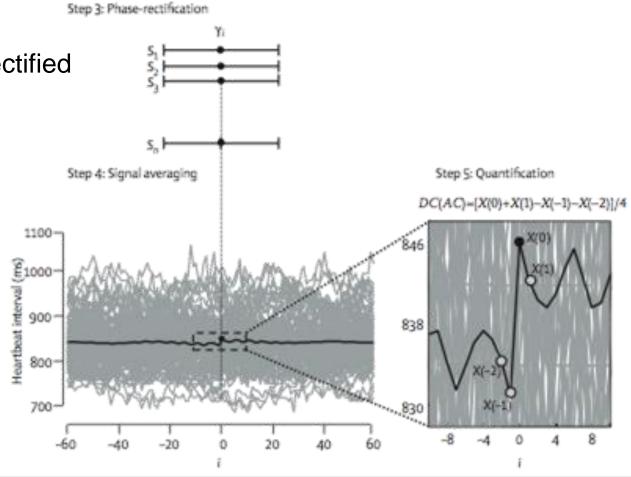
Dezellerationskapazität (DC)


- Im Gegensatz zur HRT erfolgt die Berechnung auf allen Schlägen, die nicht verfrüht sind.
- Maß für die "Entschleunigung" der Herzfrequenz
- Starker Prädiktor für plötzlichen Herztod



EKG-Parameter: DC

- Ankerpunkte festlegen
- Segmente definieren

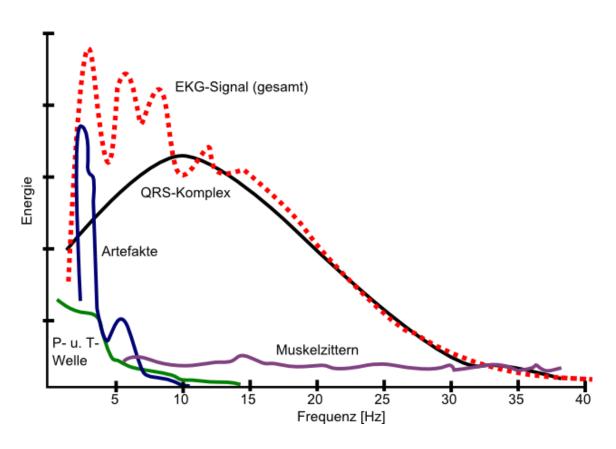


EKG-Parameter: DC

3. Phasenausrichtung

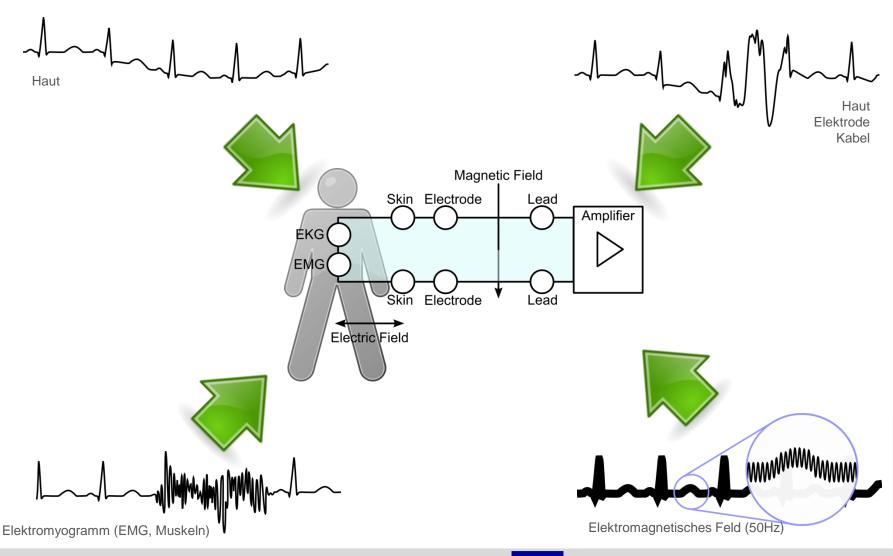
 Mittelwertbildung (PRSA, Phase Rectified Signal Averaging)

Signalaufbereitung


- Insbesondere bei der unüberwachten EKG-Aufzeichnung ist die Signalqualität oft unzureichend
- Das betrifft z.B.:
 - 24h-EKG (Holter-EKG)
 - Loop- und Event-Rekorder
 - Implantierbare Systeme
 - Telemedizinische Abwendungen
- Automatisierte Signalaufbereitung notwendig
 - Erkennen von Artefakten
 - Reduktion von Artefakten

20.01.2014

Spektrum des gemessenen EKG

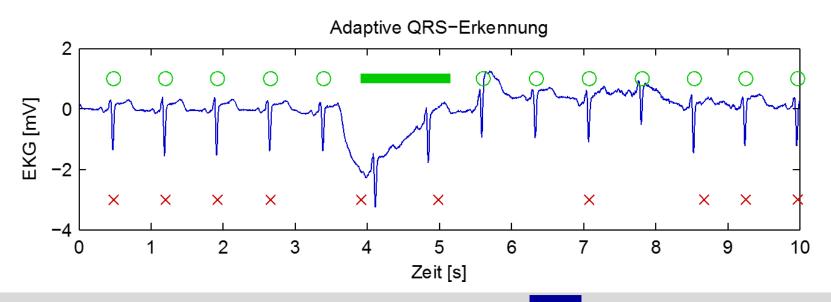


Quelle: Bahoura, M.; Hassani, M.; Hubin, M.: DSP implementation of a wavelet transform for real time ECG

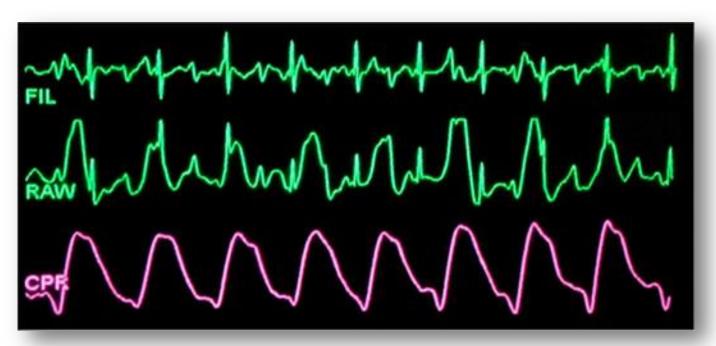
Artefakte in der EKG-Messung

20.01.2014

Artefakte verhindern


- Elektrodenauswahl
 - z.B. hochwertige Klebelektroden
- Elektrodenposition
 - Keine Muskeln
 - Kein Fett
- Hautvorbereitung
 - Trockene und saubere Haut
 - Keine Haare
- Elektrodenkabel
 - Hochwertige Kabel
 - Sauber verlegt (keine "hängenden" Elektrodenkabel)

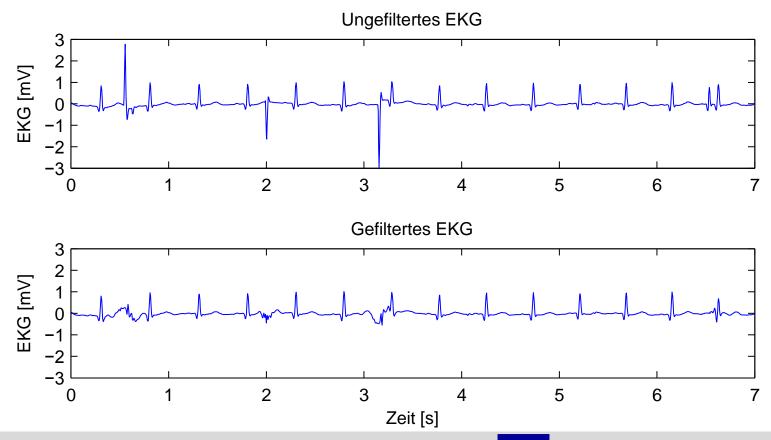
Artefakterkennung


- Artefakterkennung über
 - Kontextsignale wie Beschleunigung oder Elektrode-Haut-Impedanz
 - EKG-Veränderungen
- bewusster Ausschluss nicht mehr analysierbarer EKG-Sequenzen
- Ausweichen auf ungestörte Kanäle
- Steigerung der Qualität der QRS-Erkennung

Artefaktunterdrückung

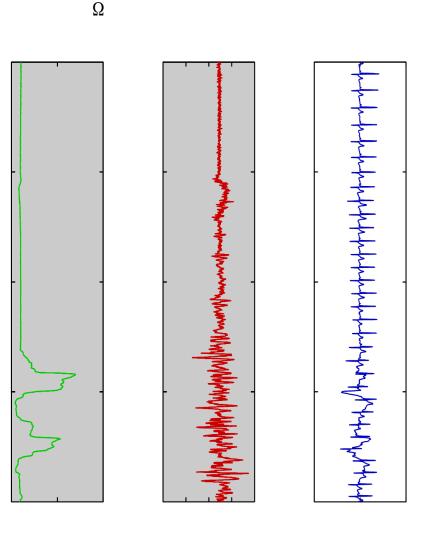
- adaptive Filter mit Second Channel zur Artefaktunterdrückung
 - Elektrodenbewegung (Beschleunigungssensor, Magnetfeldsensor)
 - Hautdehnung unter Elektroden (Dehnungssensor)

Quelle: See-Thru CPR (ZOLL)



20.01.2014

Artefaktunterdrückung


- Gezielte Unterdrückung artefaktbehafterter Sequenzen
 - 2nd channel zur Artefakterkennung (Elektrode-Haut-Impedanz)
 - Filterung mit Hilfe der Wavelet-Transformation

Kontextsignale für die EKG-Analyse nutzen

- Beschleunigungsdaten
 - Bewegungsinformationen
 - Erkennung von Bewegungsartefakten
 - EKG im Aktivitätskontext
 - Körperlage
- Elektrode-Haut-Impedanz
 - "Stör-Referenz"
 - Artefakterkennung
 - Artefaktunterdrückung

EKG im Aktivitätskontext

Erkennung von Ruhephasen (Schlafen)

keine Aktivität

geringe Aktivität

Erkennung von defibrillationspflichtigen Rhythmen (VT/VF), Adaption von Bradykardie-Schwellen

mittlere Aktivität

Betrachtung der chronotropen Kompetenz

hohe Aktivität

Erkennung von belastungsinduzierten Herzrhythmusstörungen, Adaption von Tachykardie-Schwellen

EKG-Geräteklassen (nach Einsatzbereich)

Ruhe-EKG

- 6-12-Kanäle
- kurze Aufzeichnungs-dauer (wenige Minuten)
- Saugnapf- oder Klammer-elektroden
- Papierschrieb oder Computer-EKG

Monitoring-EKG

- 3 oder 6 Kanäle
- Aufzeichnungsdauer abhängig von Anwendung (Rettungsdiensteinsatz, Operation, Intensivstationsaufenthalt)
- Klebeelektroden
- Monitor / Display, ggf. Papierausdruck

Spezial-EKG

- Ösophagal-EKG
- Endo- / Epikardiales Mapping
- Body Surface Potential Map: Inverse Elektro-kardiographie
- Endokardiales EKG: His-Bündel

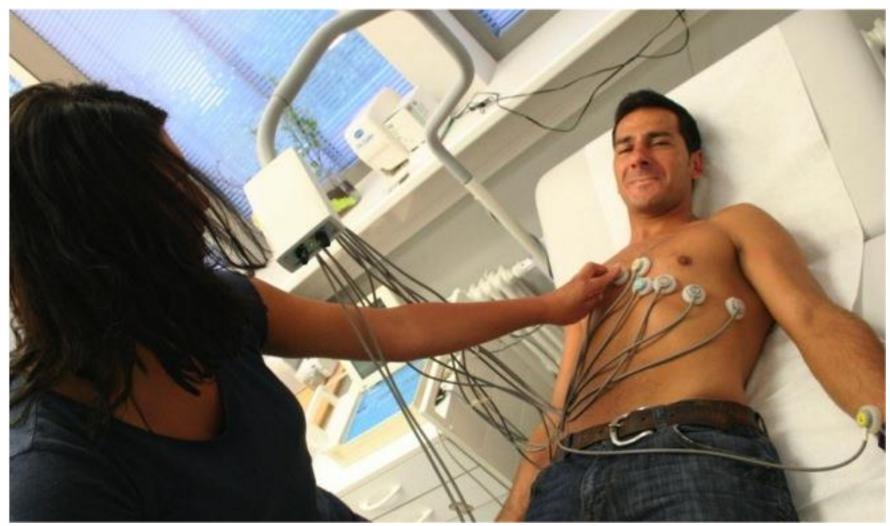
Langzeit-EKG

- 2-3 Kanäle (selten 5)
- Lange Aufzeich-nungsdauer (1 Tag, teilweise auch bis 7 Tage)
- Klebeelektroden
- Aufzeichnung auf Speicherkarten
- Computerunter-stützte Auswertung
- Event-Recording
- Klinik-Monitoring-Systeme

Belastungs-EKG

- 12-Kanäle
- Kurze/mittlere Aufzeichnungs-dauer (ca. 30 min)
- Saugnapf- oder Klebeelektroden
- Computer-überwachte Aufzeichnung
- Oft Kombination mit weiteren Parametern

EKG-Geräteklassen (nach Einsatzfeld)


- Krankenhaus
 - Ruhe-EKG
 - Monitoring-EKG
 - Belastungs-EKG
 - Spezial-EKG
 - Langzeit-EKG
- Kardiologiepraxis
 - Ruhe-EKG
 - Belastungs-EKG
 - Langzeit-EKG
 - Selten: Spezial-EKG

- Arztpraxis
 - Ruhe-EKG
 - Selten: Langzeit-EKG
- Heimbereich
 - Langzeit-EKG
 - Event-Recorder
 - Pulsmesser
- Rettungsdienst
 - Monitoring-EKG
 - Ruhe-EKG

42

EKG-Systeme: Ruhe-EKG

Quelle: Hausarztpraxis Waidmannslust

EKG-Systeme: Ruhe-EKG

Quelle: GE Healthcare

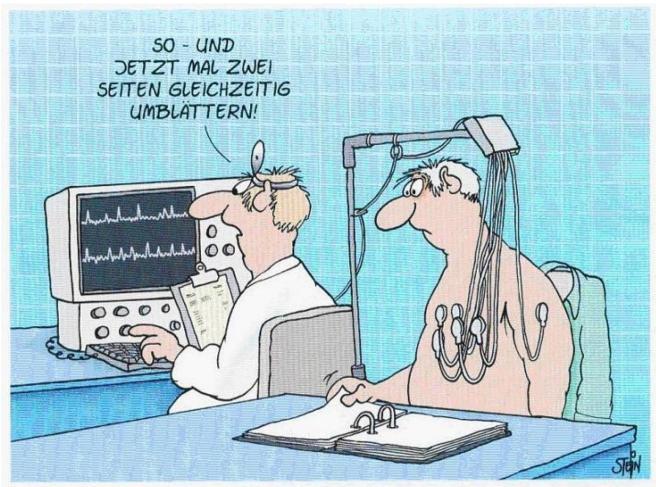
EKG-Systeme: Monitoring-EKG

Quelle: Schiller Medizintechnik

EKG-Systeme: Monitoring-EKG

Quelle: iStockphoto

EKG-Systeme: Belastungs-EKG


Quelle: AOK-Mediendienst

47

EKG-Systeme: Belastungs-EKG

Wenn Beamte zum Belastungs-EKG gebeten werden ...

EKG-Systeme: Langzeit-EKG

Quelle: Medset Medizintechnik

EKG-Systeme: Implantierbare Loop-Rekorder

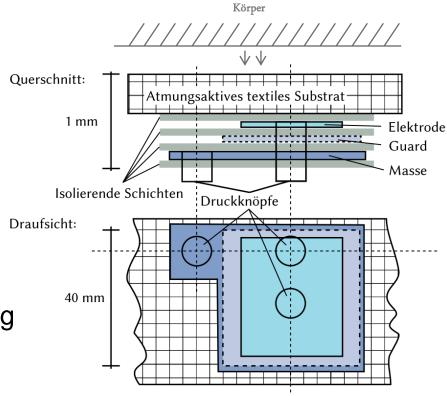
Quelle: Medtronic

Forschungs-Systeme: Gurtsysteme

Elektrodensystem für klinische Studien

Karlsruher Institut für Technologie

- Optimierte Komponenten
 - EKG-Verstärkerschaltung
 - Elektrodenaufbau
 - Textile Integration
 - Elektrodenposition
- Teil-Normkonforme Umsetzung
 - EMV (EN 60601-1-2)
 - Biokompatibel (EN 10993)
 - Erstfehlersicher / Hilfsströme (EN 60601-1)
- Aufgezeichnete Parameter
 - 6-Kanal-EKG (256 Hz, 16 Bit)
 - Schrittmacher-Erkennung
 - Aktivität (51 Hz, 12 Bit)
- Systemlaufzeit > 10 Tage



Textile kapazitive Elektroden

- Hybrider Aufbau
 - Mehrlagige textile Struktur
 - Atmungsaktiver Träger
 - HochleitendesSilber-Polyamid-Gewebe
 - Isolation durch PU-Laminat
 - Elektronikmodul
 - Impedanzwandler
 - Kontaktierung über Druckknöpfe
- Anwendungsspezifische Anpassung
 - Elektrodengröße
 - Platzierung der Elektronik
- ▶ Flexible Anpassung an Körperkontur
- Integration in textile Umgebungen

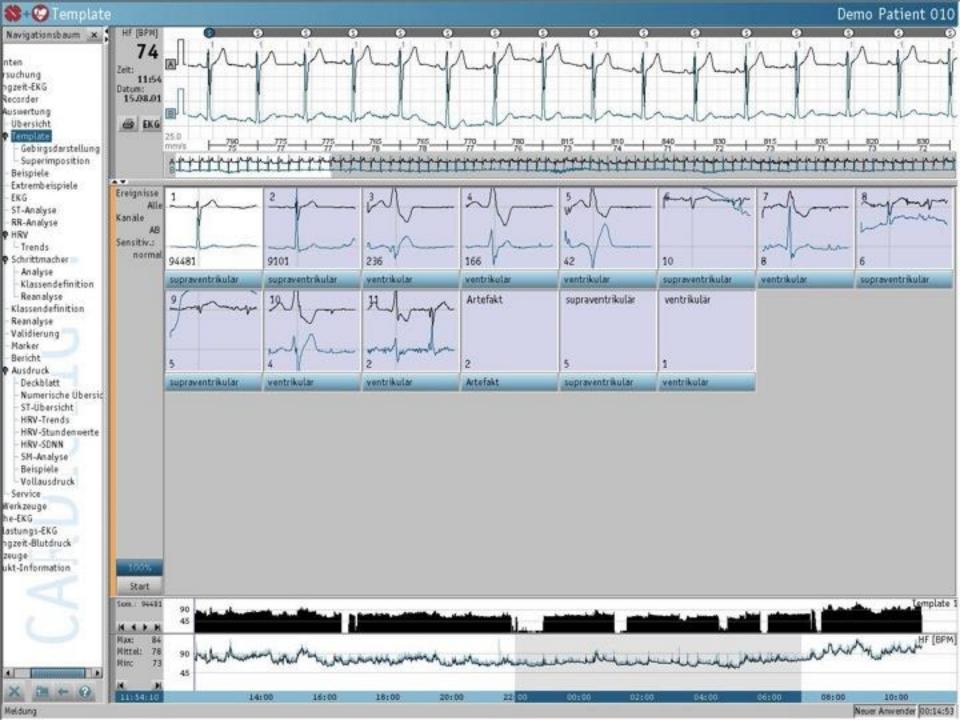
Forschungs-Systeme: Ambiente EKG-Systeme mit kapazitivem Elektroden

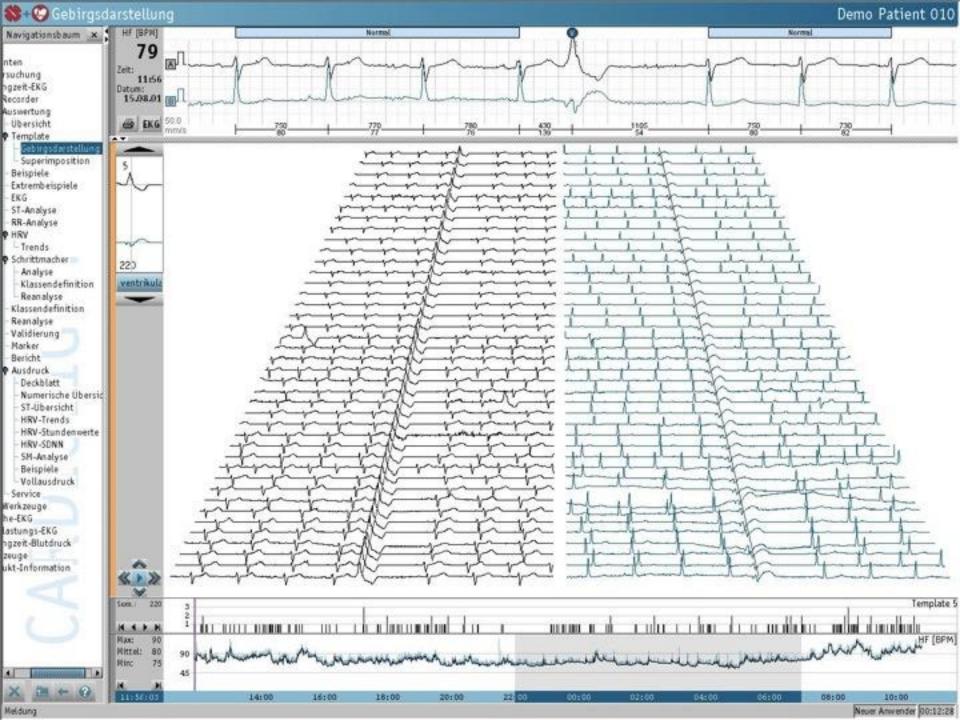
Mobiles Monitoringsystem

- Umsetzung einer Designstudie
- Vollständige Textilintegration
 - Textile Sensorik
 - Daten- und Energietransport über textile Leiter
- Low-Power Bauelemente

EKG-Monitoring im Autositz

- Trennung von Sensorfläche und **Elektronik**
- Integration in Sitzüberzug
- Aktive Gleichtaktunterdrückung "Driven Seat"
 - Erhöhung der Dynamik 10 cm Elektroden **Driven Seat** Elektrode arbeitung (ITIV)


Beispiel: Anwendungs-Software für Langzeit-EKG-Diagnostik



Informationen zum System

- Zur Auswertung von 24h-EKGs wird SW benötigt
- Beispiel: PADSY (<u>PA</u>tienten <u>D</u>iagnose <u>SY</u>stem) der Firma Medset GmbH (Hamburg)
 - Entwicklung seit ca. 1995
 - Bis auf einige hardwarenahe / optimierte Komponenten komplett Javabasiert
 - Integration verschiedener diagnostischer Komponenten, u.a.
 - Belastungs-EKG
 - Ruhe-EKG
 - Langzeit-Blutdruck
 - Spirometrie

